Behavioural Cloning from Observation

Bases: Method

Behavioural Cloning from Observation method based on (Torabi et. al., 2018)

Source code in src/benchmark/methods/bco.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
class BCO(Method):
    """Behavioural Cloning from Observation method based on (Torabi et. al., 2018)"""

    __version__ = "1.0.0"
    __author__ = "Torabi et. al."
    __method_name__ = "Behavioural Cloning from Observation"

    def __init__(
        self,
        environment: Env,
        enjoy_criteria: int = 100,
        verbose: bool = False,
        config_file: str = None,
    ) -> None:
        """Initialize BCO method."""
        self.enjoy_criteria = enjoy_criteria
        self.verbose = verbose
        try:
            self.environment_name = environment.spec.name
        except AttributeError:
            self.environment_name = environment.spec._env_name
        self.save_path = f"./tmp/bco/{self.environment_name}/"
        self.visual = False

        if config_file is None:
            config_file = CONFIG_FILE

        self.hyperparameters = import_hyperparameters(
            config_file,
            environment.spec.id,
        )

        super().__init__(
            environment,
            self.hyperparameters
        )

        idm = self.hyperparameters.get('idm', 'MlpPolicy')
        if idm == 'MlpPolicy':
            self.idm = MLP(self.observation_size * 2, self.action_size)
        elif idm == 'MlpWithAttention':
            self.idm = MlpWithAttention(self.observation_size * 2, self.action_size)
        elif idm in ['CnnPolicy', 'ResnetPolicy']:
            self.visual = True
            if idm == 'CnnPolicy':
                encoder = CNN(self.observation_size)
            elif idm == 'ResnetPolicy':
                encoder = Resnet(self.observation_size)
            else:
                raise ValueError(f'Encoder {idm} not implemented, is it a typo?')

            with torch.no_grad():
                output = encoder(torch.zeros(1, *self.observation_size[::-1]))
            linear = MLP(output.shape[-1], self.action_size)
            self.idm = nn.Sequential(encoder, linear)

        self.idm_optimizer = optim.Adam(self.idm.parameters(), lr=self.hyperparameters['idm_lr'])
        self.idm_loss = nn.CrossEntropyLoss() if self.discrete else nn.MSELoss()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward method for the method.

        Args:
            x (torch.Tensor): input.

        Returns:
            x (torch.Tensor): logits output.
        """
        return self.policy(x)

    def save(self, path: str = None) -> None:
        """Save all models weights.

        Args:
            path (str): where to save the models. Defaults to None.
        """
        path = self.save_path if path is None else path
        if not os.path.exists(path):
            os.makedirs(path)

        torch.save(self.policy.state_dict(), f"{path}/best_model.ckpt")
        torch.save(self.idm.state_dict(), f"{path}/idm.ckpt")

    def load(self, path: str = None) -> Self:
        """Load all model weights.

        Args:
            path (str): where to look for the model's weights. Defaults to None.

        Raises:
            ValueError: if the path does not exist.
        """
        path = self.save_path if path is None else path

        if not os.path.exists(path):
            raise ValueError("Path does not exists.")

        self.policy.load_state_dict(
            torch.load(
                f"{path}best_model.ckpt",
                map_location=torch.device(self.device)
            )
        )
        self.idm.load_state_dict(
            torch.load(
                f"{path}/idm.ckpt",
                map_location=torch.device(self.device)
            )
        )
        return self

    def train(
        self,
        n_epochs: int,
        train_dataset: Dict[str, DataLoader],
        eval_dataset: Dict[str, DataLoader] = None,
        folder: str = None
    ) -> Self:
        """Train process.

        Args:
            n_epochs (int): amount of epoch to run.
            train_dataset (DataLoader): data to train.
            eval_dataset (DataLoader): data to eval. Defaults to None.

        Returns:
            method (Self): trained method.
        """
        if folder is None:
            folder = f"../benchmark_results/bco/{self.environment_name}"
        if not os.path.exists(folder):
            os.makedirs(f"{folder}/")
        board = Tensorboard(path=folder)
        self.policy.to(self.device)
        self.idm.to(self.device)

        best_model = -np.inf
        if not isinstance(train_dataset, dict):
            train_dataset = {"expert_dataset": train_dataset}

        if "idm_dataset" not in train_dataset.keys():
            print("No random dataset found")
            random_path = f"./dataset/random_{self.environment.spec.id}"

            if not os.path.exists(random_path):
                print("Creating random dataset from scratch")
                train_dataset["idm_dataset"] = get_random_dataset(
                    environment_name=self.environment.spec.id,
                    episodes=self.hyperparameters["random_episodes"]
                )
            else:
                print("Loading local random dataset")
                train_dataset["idm_dataset"] = BaselineDataset(
                    f"{random_path}/teacher.npz"
                )

            train_dataset["idm_dataset"] = DataLoader(
                train_dataset["idm_dataset"],
                batch_size=train_dataset["expert_dataset"].batch_size,
                shuffle=True
            )

        pbar = range(n_epochs)
        if self.verbose:
            pbar = tqdm(pbar)
        for epoch in pbar:
            train_metrics = self._train(**train_dataset)
            board.add_scalars("Train", epoch="train", **train_metrics)

            if eval_dataset is not None:
                eval_metrics = self._eval(eval_dataset)
                board.add_scalars("Eval", epoch="eval", **eval_metrics)
                board.step(["train", "eval"])
            else:
                board.step("train")

            if epoch % self.enjoy_criteria == 0:
                train_dataset = self._append_samples(train_dataset)

            if epoch % self.enjoy_criteria == 0 or epoch + 1 == n_epochs:
                metrics = self._enjoy()
                board.add_scalars("Enjoy", epoch="enjoy", **metrics)
                board.step("enjoy")
                if best_model < metrics["aer"]:
                    self.save()

        return self

    def _append_samples(self, train_dataset: DataLoader) -> DataLoader:
        """Append samples to DataLoader.

        Args:
            train_dataset (DataLoader): current train dataset.

        Returns:
            train_dataset (DataLoader): new train dataset.
        """
        _, i_pos = self._enjoy(return_ipos=True)
        train_dataset['idm_dataset'].dataset.states = torch.cat((
            train_dataset['idm_dataset'].dataset.states,
            torch.from_numpy(i_pos['states'])),
            dim=0
        )
        train_dataset['idm_dataset'].dataset.next_states = torch.cat((
            train_dataset['idm_dataset'].dataset.next_states,
            torch.from_numpy(i_pos['next_states'])),
            dim=0
        )
        train_dataset['idm_dataset'].dataset.actions = torch.cat((
            train_dataset['idm_dataset'].dataset.actions,
            torch.from_numpy(i_pos['actions'].reshape((-1, 1)))),
            dim=0
        )
        return train_dataset

    def _train(self, idm_dataset: DataLoader, expert_dataset: DataLoader) -> Metrics:
        """Train loop.

        Args:
            dataset (DataLoader): train data.
        """
        if not self.idm.training:
            self.idm.train()

        if not self.policy.training:
            self.policy.train()

        idm_accumulated_loss = []
        idm_accumulated_accuracy = []

        accumulated_loss = []
        accumulated_accuracy = []

        for batch in idm_dataset:
            state, action, next_state = batch
            state = state.to(self.device)
            action = action.to(self.device)
            next_state = next_state.to(self.device)

            self.idm_optimizer.zero_grad()
            predictions = self.idm(torch.cat((state, next_state), dim=1))

            loss = self.idm_loss(predictions, action.squeeze(1).long())
            loss.backward()
            idm_accumulated_loss.append(loss.item())
            self.idm_optimizer.step()

            accuracy: Number = None
            if self.discrete:
                accuracy = accuracy_fn(predictions, action.squeeze(1))
            else:
                accuracy = (action - predictions).pow(2).sum(1).sqrt().mean().item()
            idm_accumulated_accuracy.append(accuracy)

        self.idm.eval()

        for batch in expert_dataset:
            state, _, next_state = batch
            state = state.to(self.device)
            next_state = next_state.to(self.device)

            with torch.no_grad():
                if self.discrete:
                    action = self.idm(torch.cat((state, next_state), dim=1))
                    action = torch.argmax(action, dim=1)
                else:
                    action = self.idm(torch.cat((state, next_state), dim=1))

            self.optimizer_fn.zero_grad()
            predictions = self.forward(state)

            loss = self.loss_fn(predictions, action.squeeze(1).long())
            loss.backward()
            accumulated_loss.append(loss.item())
            self.optimizer_fn.step()

            accuracy: Number = None
            if self.discrete:
                accuracy = accuracy_fn(predictions, action.squeeze(1))
            else:
                accuracy = (action - predictions).pow(2).sum(1).sqrt().mean().item()
            accumulated_accuracy.append(accuracy)

        metrics = {
            "idm_loss": np.mean(idm_accumulated_loss),
            "idm_accuracy": np.mean(idm_accumulated_accuracy),
            "loss": np.mean(accumulated_loss),
            "accuracy": np.mean(accumulated_accuracy)
        }
        return metrics

    def _eval(self, dataset: DataLoader) -> Metrics:
        """Evaluation loop.

        Args:
            dataset (DataLoader): data to eval.
        """
        if self.policy.training:
            self.policy.eval()

        accumulated_accuracy = []

        for batch in dataset:
            state, action, _ = batch
            state = state.to(self.device)

            with torch.no_grad():
                predictions = self.policy(state)

            accuracy: Number = None
            if self.discrete:
                accuracy = accuracy_fn(predictions, action.squeeze(1))
            else:
                accuracy = (action - predictions).pow(2).sum(1).sqrt().mean().item()
            accumulated_accuracy.append(accuracy)

        return {"accuracy": np.mean(accumulated_accuracy)}

    def _enjoy(
        self,
        render: bool = False,
        teacher_reward: Number = None,
        random_reward: Number = None,
        return_ipos: bool = False,
    ) -> Union[Metrics, Tuple[Metrics, Dict[str, List[float]]]]:
        """Function for evaluation of the policy in the environment

        Args:
            render (bool): Whether it should render. Defaults to False.
            teacher_reward (Number): reward for teacher policy.
            random_reward (Number): reward for a random policy.
            return_ipos (bool): whether it should return data to append to I_pos.

        Returns:
            Metrics:
                aer (Number): average reward for 100 episodes.
                aer_std (Number): standard deviation for aer.
                performance (Number): if teacher_reward and random_reward are
                    informed than the performance metric is calculated.
                perforamance_std (Number): standard deviation for performance.
            I_pos:
                states (List[Number]): states before action.
                actions (List[Number]): action given states.
                next_states (List[Number]): next state given states and actions.
        """
        environment = GymWrapper(self.environment)
        average_reward = []
        i_pos = defaultdict(list)

        for _ in range(100):
            done = False
            obs = environment.reset()
            accumulated_reward = 0
            while not done:
                if render:
                    environment.render()
                action = self.predict(obs)

                i_pos['states'].append(obs)
                i_pos['actions'].append(action)

                obs, reward, done, *_ = environment.step(action)
                accumulated_reward += reward
                i_pos['next_states'].append(obs)
            average_reward.append(accumulated_reward)

        metrics = average_episodic_reward(average_reward)
        if teacher_reward is not None and random_reward is not None:
            metrics.update(performance(average_reward, teacher_reward, random_reward))

        i_pos = {key: np.array(value) for key, value in i_pos.items()}

        if return_ipos:
            return metrics, i_pos
        return metrics

__init__(environment, enjoy_criteria=100, verbose=False, config_file=None)

Initialize BCO method.

src/benchmark/methods/bco.py
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def __init__(
    self,
    environment: Env,
    enjoy_criteria: int = 100,
    verbose: bool = False,
    config_file: str = None,
) -> None:
    """Initialize BCO method."""
    self.enjoy_criteria = enjoy_criteria
    self.verbose = verbose
    try:
        self.environment_name = environment.spec.name
    except AttributeError:
        self.environment_name = environment.spec._env_name
    self.save_path = f"./tmp/bco/{self.environment_name}/"
    self.visual = False

    if config_file is None:
        config_file = CONFIG_FILE

    self.hyperparameters = import_hyperparameters(
        config_file,
        environment.spec.id,
    )

    super().__init__(
        environment,
        self.hyperparameters
    )

    idm = self.hyperparameters.get('idm', 'MlpPolicy')
    if idm == 'MlpPolicy':
        self.idm = MLP(self.observation_size * 2, self.action_size)
    elif idm == 'MlpWithAttention':
        self.idm = MlpWithAttention(self.observation_size * 2, self.action_size)
    elif idm in ['CnnPolicy', 'ResnetPolicy']:
        self.visual = True
        if idm == 'CnnPolicy':
            encoder = CNN(self.observation_size)
        elif idm == 'ResnetPolicy':
            encoder = Resnet(self.observation_size)
        else:
            raise ValueError(f'Encoder {idm} not implemented, is it a typo?')

        with torch.no_grad():
            output = encoder(torch.zeros(1, *self.observation_size[::-1]))
        linear = MLP(output.shape[-1], self.action_size)
        self.idm = nn.Sequential(encoder, linear)

    self.idm_optimizer = optim.Adam(self.idm.parameters(), lr=self.hyperparameters['idm_lr'])
    self.idm_loss = nn.CrossEntropyLoss() if self.discrete else nn.MSELoss()

_append_samples(train_dataset)

Append samples to DataLoader.

Parameters:
  • train_dataset (DataLoader) –

    current train dataset.

Returns:
  • train_dataset( DataLoader ) –

    new train dataset.

src/benchmark/methods/bco.py
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def _append_samples(self, train_dataset: DataLoader) -> DataLoader:
    """Append samples to DataLoader.

    Args:
        train_dataset (DataLoader): current train dataset.

    Returns:
        train_dataset (DataLoader): new train dataset.
    """
    _, i_pos = self._enjoy(return_ipos=True)
    train_dataset['idm_dataset'].dataset.states = torch.cat((
        train_dataset['idm_dataset'].dataset.states,
        torch.from_numpy(i_pos['states'])),
        dim=0
    )
    train_dataset['idm_dataset'].dataset.next_states = torch.cat((
        train_dataset['idm_dataset'].dataset.next_states,
        torch.from_numpy(i_pos['next_states'])),
        dim=0
    )
    train_dataset['idm_dataset'].dataset.actions = torch.cat((
        train_dataset['idm_dataset'].dataset.actions,
        torch.from_numpy(i_pos['actions'].reshape((-1, 1)))),
        dim=0
    )
    return train_dataset

_enjoy(render=False, teacher_reward=None, random_reward=None, return_ipos=False)

Function for evaluation of the policy in the environment

Parameters:
  • render (bool, default: False ) –

    Whether it should render. Defaults to False.

  • teacher_reward (Number, default: None ) –

    reward for teacher policy.

  • random_reward (Number, default: None ) –

    reward for a random policy.

  • return_ipos (bool, default: False ) –

    whether it should return data to append to I_pos.

Returns:
  • Metrics( Union[Metrics, Tuple[Metrics, Dict[str, List[float]]]] ) –

    aer (Number): average reward for 100 episodes. aer_std (Number): standard deviation for aer. performance (Number): if teacher_reward and random_reward are informed than the performance metric is calculated. perforamance_std (Number): standard deviation for performance.

  • I_pos( Union[Metrics, Tuple[Metrics, Dict[str, List[float]]]] ) –

    states (List[Number]): states before action. actions (List[Number]): action given states. next_states (List[Number]): next state given states and actions.

src/benchmark/methods/bco.py
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
def _enjoy(
    self,
    render: bool = False,
    teacher_reward: Number = None,
    random_reward: Number = None,
    return_ipos: bool = False,
) -> Union[Metrics, Tuple[Metrics, Dict[str, List[float]]]]:
    """Function for evaluation of the policy in the environment

    Args:
        render (bool): Whether it should render. Defaults to False.
        teacher_reward (Number): reward for teacher policy.
        random_reward (Number): reward for a random policy.
        return_ipos (bool): whether it should return data to append to I_pos.

    Returns:
        Metrics:
            aer (Number): average reward for 100 episodes.
            aer_std (Number): standard deviation for aer.
            performance (Number): if teacher_reward and random_reward are
                informed than the performance metric is calculated.
            perforamance_std (Number): standard deviation for performance.
        I_pos:
            states (List[Number]): states before action.
            actions (List[Number]): action given states.
            next_states (List[Number]): next state given states and actions.
    """
    environment = GymWrapper(self.environment)
    average_reward = []
    i_pos = defaultdict(list)

    for _ in range(100):
        done = False
        obs = environment.reset()
        accumulated_reward = 0
        while not done:
            if render:
                environment.render()
            action = self.predict(obs)

            i_pos['states'].append(obs)
            i_pos['actions'].append(action)

            obs, reward, done, *_ = environment.step(action)
            accumulated_reward += reward
            i_pos['next_states'].append(obs)
        average_reward.append(accumulated_reward)

    metrics = average_episodic_reward(average_reward)
    if teacher_reward is not None and random_reward is not None:
        metrics.update(performance(average_reward, teacher_reward, random_reward))

    i_pos = {key: np.array(value) for key, value in i_pos.items()}

    if return_ipos:
        return metrics, i_pos
    return metrics

_eval(dataset)

Evaluation loop.

Parameters:
  • dataset (DataLoader) –

    data to eval.

src/benchmark/methods/bco.py
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def _eval(self, dataset: DataLoader) -> Metrics:
    """Evaluation loop.

    Args:
        dataset (DataLoader): data to eval.
    """
    if self.policy.training:
        self.policy.eval()

    accumulated_accuracy = []

    for batch in dataset:
        state, action, _ = batch
        state = state.to(self.device)

        with torch.no_grad():
            predictions = self.policy(state)

        accuracy: Number = None
        if self.discrete:
            accuracy = accuracy_fn(predictions, action.squeeze(1))
        else:
            accuracy = (action - predictions).pow(2).sum(1).sqrt().mean().item()
        accumulated_accuracy.append(accuracy)

    return {"accuracy": np.mean(accumulated_accuracy)}

_train(idm_dataset, expert_dataset)

Train loop.

Parameters:
  • dataset (DataLoader) –

    train data.

src/benchmark/methods/bco.py
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
def _train(self, idm_dataset: DataLoader, expert_dataset: DataLoader) -> Metrics:
    """Train loop.

    Args:
        dataset (DataLoader): train data.
    """
    if not self.idm.training:
        self.idm.train()

    if not self.policy.training:
        self.policy.train()

    idm_accumulated_loss = []
    idm_accumulated_accuracy = []

    accumulated_loss = []
    accumulated_accuracy = []

    for batch in idm_dataset:
        state, action, next_state = batch
        state = state.to(self.device)
        action = action.to(self.device)
        next_state = next_state.to(self.device)

        self.idm_optimizer.zero_grad()
        predictions = self.idm(torch.cat((state, next_state), dim=1))

        loss = self.idm_loss(predictions, action.squeeze(1).long())
        loss.backward()
        idm_accumulated_loss.append(loss.item())
        self.idm_optimizer.step()

        accuracy: Number = None
        if self.discrete:
            accuracy = accuracy_fn(predictions, action.squeeze(1))
        else:
            accuracy = (action - predictions).pow(2).sum(1).sqrt().mean().item()
        idm_accumulated_accuracy.append(accuracy)

    self.idm.eval()

    for batch in expert_dataset:
        state, _, next_state = batch
        state = state.to(self.device)
        next_state = next_state.to(self.device)

        with torch.no_grad():
            if self.discrete:
                action = self.idm(torch.cat((state, next_state), dim=1))
                action = torch.argmax(action, dim=1)
            else:
                action = self.idm(torch.cat((state, next_state), dim=1))

        self.optimizer_fn.zero_grad()
        predictions = self.forward(state)

        loss = self.loss_fn(predictions, action.squeeze(1).long())
        loss.backward()
        accumulated_loss.append(loss.item())
        self.optimizer_fn.step()

        accuracy: Number = None
        if self.discrete:
            accuracy = accuracy_fn(predictions, action.squeeze(1))
        else:
            accuracy = (action - predictions).pow(2).sum(1).sqrt().mean().item()
        accumulated_accuracy.append(accuracy)

    metrics = {
        "idm_loss": np.mean(idm_accumulated_loss),
        "idm_accuracy": np.mean(idm_accumulated_accuracy),
        "loss": np.mean(accumulated_loss),
        "accuracy": np.mean(accumulated_accuracy)
    }
    return metrics

forward(x)

Forward method for the method.

Parameters:
  • x (Tensor) –

    input.

Returns:
  • x( Tensor ) –

    logits output.

src/benchmark/methods/bco.py
 92
 93
 94
 95
 96
 97
 98
 99
100
101
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Forward method for the method.

    Args:
        x (torch.Tensor): input.

    Returns:
        x (torch.Tensor): logits output.
    """
    return self.policy(x)

load(path=None)

Load all model weights.

Parameters:
  • path (str, default: None ) –

    where to look for the model's weights. Defaults to None.

Raises:
  • ValueError

    if the path does not exist.

src/benchmark/methods/bco.py
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def load(self, path: str = None) -> Self:
    """Load all model weights.

    Args:
        path (str): where to look for the model's weights. Defaults to None.

    Raises:
        ValueError: if the path does not exist.
    """
    path = self.save_path if path is None else path

    if not os.path.exists(path):
        raise ValueError("Path does not exists.")

    self.policy.load_state_dict(
        torch.load(
            f"{path}best_model.ckpt",
            map_location=torch.device(self.device)
        )
    )
    self.idm.load_state_dict(
        torch.load(
            f"{path}/idm.ckpt",
            map_location=torch.device(self.device)
        )
    )
    return self

save(path=None)

Save all models weights.

Parameters:
  • path (str, default: None ) –

    where to save the models. Defaults to None.

src/benchmark/methods/bco.py
103
104
105
106
107
108
109
110
111
112
113
114
def save(self, path: str = None) -> None:
    """Save all models weights.

    Args:
        path (str): where to save the models. Defaults to None.
    """
    path = self.save_path if path is None else path
    if not os.path.exists(path):
        os.makedirs(path)

    torch.save(self.policy.state_dict(), f"{path}/best_model.ckpt")
    torch.save(self.idm.state_dict(), f"{path}/idm.ckpt")

train(n_epochs, train_dataset, eval_dataset=None, folder=None)

Train process.

Parameters:
  • n_epochs (int) –

    amount of epoch to run.

  • train_dataset (DataLoader) –

    data to train.

  • eval_dataset (DataLoader, default: None ) –

    data to eval. Defaults to None.

Returns:
  • method( Self ) –

    trained method.

src/benchmark/methods/bco.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
def train(
    self,
    n_epochs: int,
    train_dataset: Dict[str, DataLoader],
    eval_dataset: Dict[str, DataLoader] = None,
    folder: str = None
) -> Self:
    """Train process.

    Args:
        n_epochs (int): amount of epoch to run.
        train_dataset (DataLoader): data to train.
        eval_dataset (DataLoader): data to eval. Defaults to None.

    Returns:
        method (Self): trained method.
    """
    if folder is None:
        folder = f"../benchmark_results/bco/{self.environment_name}"
    if not os.path.exists(folder):
        os.makedirs(f"{folder}/")
    board = Tensorboard(path=folder)
    self.policy.to(self.device)
    self.idm.to(self.device)

    best_model = -np.inf
    if not isinstance(train_dataset, dict):
        train_dataset = {"expert_dataset": train_dataset}

    if "idm_dataset" not in train_dataset.keys():
        print("No random dataset found")
        random_path = f"./dataset/random_{self.environment.spec.id}"

        if not os.path.exists(random_path):
            print("Creating random dataset from scratch")
            train_dataset["idm_dataset"] = get_random_dataset(
                environment_name=self.environment.spec.id,
                episodes=self.hyperparameters["random_episodes"]
            )
        else:
            print("Loading local random dataset")
            train_dataset["idm_dataset"] = BaselineDataset(
                f"{random_path}/teacher.npz"
            )

        train_dataset["idm_dataset"] = DataLoader(
            train_dataset["idm_dataset"],
            batch_size=train_dataset["expert_dataset"].batch_size,
            shuffle=True
        )

    pbar = range(n_epochs)
    if self.verbose:
        pbar = tqdm(pbar)
    for epoch in pbar:
        train_metrics = self._train(**train_dataset)
        board.add_scalars("Train", epoch="train", **train_metrics)

        if eval_dataset is not None:
            eval_metrics = self._eval(eval_dataset)
            board.add_scalars("Eval", epoch="eval", **eval_metrics)
            board.step(["train", "eval"])
        else:
            board.step("train")

        if epoch % self.enjoy_criteria == 0:
            train_dataset = self._append_samples(train_dataset)

        if epoch % self.enjoy_criteria == 0 or epoch + 1 == n_epochs:
            metrics = self._enjoy()
            board.add_scalars("Enjoy", epoch="enjoy", **metrics)
            board.step("enjoy")
            if best_model < metrics["aer"]:
                self.save()

    return self